On the derivation algebras of Lie module triple systems
نویسندگان
چکیده
منابع مشابه
On Derivation Algebras of Malcev Algebras and Lie Triple Systems
W. H. Davenport has shown that the derivation algebra 3)(4) of a semisimple Malcev algebra A of characteristic 0 acts completely reducibly on A. The purpose of the present note is to characterize those Malcev algebras which have such derivation algebras as those whose radical is central and to obtain the same result for Lie triple systems. Analogous results are known to hold for standard and al...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولOn Lie Algebras and Triple Systems
In this paper, we consider several different constructions of simple B3-type Lie algebras from several triple systems and the correspondence with extended Dynkin diagrams associated with such triple systems.
متن کاملLie triple derivation algebra of Virasoro-like algebra
Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.
متن کاملAlternating triple systems with simple Lie algebras of derivations
We prove a formula for the multiplicity of the irreducible representation V (n) of sl(2, C) as a direct summand of its own exterior cube ΛV (n). From this we determine that V (n) occurs exactly once as a summand of ΛV (n) if and only if n = 3, 5, 6, 7, 8, 10. These representations admit a unique sl(2)-invariant alternating ternary structure obtained from the projection ΛV (n) → V (n). We calcul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1987
ISSN: 0021-8693
DOI: 10.1016/0021-8693(87)90234-1